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Mo$va$on	
  
•  Adap$ve	
  Mul$grid	
  proved	
  efficient	
  in	
  the	
  Wilson/Clover	
  

solver.	
  	
  
–  Babich	
  et	
  al.,	
  PRL	
  2010	
  
–  Osborn	
  et	
  al.,	
  PoS	
  2010.	
  	
  

•  HMC	
  involves	
  repeated	
  solving	
  of	
  the	
  Dirac	
  equa$on	
  
–  In	
  the	
  ac$on	
  (a	
  few)	
  
–  In	
  the	
  force	
  (many)	
  

•  Natural	
  to	
  integrate	
  MG	
  solver	
  into	
  HMC	
  

•  Project	
  started	
  at	
  Boston	
  University	
  late	
  2012	
  under	
  NSF	
  
grant	
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Figure 2: Total time to solution including setup versus
number of right hand sides for mixed precision (MP)
BiCGStab and multigrid at different quark masses.

 10

 12

 14

 16

 18

 20

 3  3.5  4  4.5  5  5.5  6  6.5

sp
ee

du
p 

pe
r s

ol
ve

 (M
P 

Bi
C

G
St

ab
 / 

M
P 

m
ul

tig
rid

)

setup time (MP BiCGStab solves)

m=-0.0867

Figure 3: Speedup of multigrid solver relative to
BiCGStab versus setup time at the physical quark
mass.

faster due to the improved time per solution. The break even point becomes smaller as the quark
mass is decreased. At close to strange quark mass the crossing is at around 10 full propagators
(of 12 solves each). At the dynamical mass the crossing is at 1 full propagator and at the physical
mass it is about half a propagator (6 solves). Of course it is possible to save the vectors and even
the coarse matrix to load back in for later analysis, so for analysis projects on saved configurations,
the setup cost should not be an issue. Only for configuration generation is the setup cost an issue.
Since the main focus for the implementation is currently for analysis, the setup code has not been
fully tuned and there is still room for improvement both algorithmically and in code optimization.

One still has some freedom to choose how much time to spend in the setup procedure which
then affects the quality of the resulting solver. In figure 3 we plot the speedup for a single applica-
tion of the multigrid solver relative to BiCGStab versus the time spent in the setup (in units of the
time for a single BiCGStab solve). These results were obtained on the larger lattice at the physical
quark mass. If we spend about 6 BiCGStab solves worth of work in the setup we get a solver that
is about 20× faster than BiCGStab, which is what was used in the previous figures. If we lower the
setup cost to about 3 BiCGStab solves, then the solver speedup reduces to around 11×.

We can see how this freedom can be used to optimize the total time in figure 4. Here we
show the total solution time including setup versus number of solves for the four different setups
shown in the previous figure. These runs were again done on the larger lattice at the physical mass.
Here we see that the smallest setup time gives the best total performance up to about 4 propagators
at which point the second smallest setup becomes best. The third setup takes over at around 8
propagators and the last at around 25. Thus if the setup is not being saved for reuse at a later time,
one can optimize the setup for the particular work being done.

In figure 5 we compare the performance of the 2-level and 3-level multigrid algorithms for
both lattice sizes. For heavier masses the difference between 2 and 3 levels is small while both are
still better than BiCGStab. For lighter masses the 3 level algorithm is clearly better and is about
2.5× better at the physical quark mass. As noted earlier the increase in time seen for the 3-level
algorithm at the lightest quark masses suggests that improving the coarse level with additional work
in the setup and/or adding a fourth multigrid level may be beneficial here.

In figure 6 we show how the relative speedup of multigrid over BiCGStab varies with the re-
quested residual tolerance. These results are obtained at the physical mass. For the smaller volume
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on the fine grid only. It is evident that both Eig-CG and
MG-GCR vastly reduce the mass dependence that is seen
with CG. However, while MG-GCR demonstrates close-to-
ideal OðVÞ scaling over all three volumes, the number of
Eig-CG iterations approximately doubles from the smallest
to the intermediate volume. Table I gives the number of
outer MG-GCR solver iterations for these same results,
clearly demonstrating the close-to-ideal scaling in both
mass and volume. For both MG-GCR and Eig-CG, once
the mass parameter drops below the critical value that
corresponds to zero physical fermion mass (to the left of
the vertical line), the prototypes or eigenvectors no longer
represent the null space of the operator, and so the number
of iterations increases rapidly.

In terms of raw operation count, MG-GCR is compa-
rable to Eig-CG on the 163 # 64 lattice, and 50% more
efficient on the 243 # 64 lattice. In Fig. 2, we plot
the number of floating point operations to reach conver-
gence on the 323 # 96 lattice: compared to CG, MG-GCR

reduces the cost by a factor of 3 for heavy quark masses,
rising to a factor of 15 as the critical mass is approached.
One important issue is the cost of the algorithm setup:

the adaptive process described above of sequentially find-
ing prototypes to augment Vk is expensive, since each
prototype is found using the then-current MG solver with
k$ 1 prototypes. Noting that relaxation alone will in
practice yield a good initial guess for a prototype, we
instead adopt the following two-step process. First, we
apply 10 iterations of relaxation to each of 20 random
vectors to define an initial V. We then divide the 20
resulting prototypes into five groups of four and refine
one group at a time by removing it from V and iterating
the truncated MG method 5 times upon the prototypes in
the group before reinserting it back into V. This setup
process need only be done at the critical mass [m ¼ mcrit,
Reð!minÞ & 0], since the resulting null space representa-
tion can be used for all heavier masses; this feature is
independent of volume. The cost is equivalent to a single
CG solve at an intermediate quark mass (Fig. 2), but can be
amortized when solving against multiple source vectors
and/or with multiple masses.
Concluding remarks.—In this work, we have introduced

a new adaptive multigrid algorithm for the non-Hermitian
Wilson-Dirac operator. The main results are the near elimi-
nation of critical slowing down as the fermion mass is
taken to zero and the optimal scaling of the algorithm
with volume. These developments promise to radically
reduce the computational cost of lattice field theory calcu-
lations. Future work in this area will focus on applying our
algorithm in the context of full lattice QCD simulations
and developing these techniques for staggered and chiral
fermion discretizations of the Dirac operator.
This research was supported under DOE grants
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TABLE I. Number of iterations for the MG-GCR solver to
reach convergence (parameters given in Fig. 1).

Mass 163 # 64 243 # 64 323 # 96

$0:3980 40 40 41
$0:4005 41 41 42
$0:4030 42 42 43
$0:4055 42 43 43
$0:4080 43 44 45
$0:4105 44 46 49
$0:4130 45 49 52
$0:4155 47 54 57
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FIG. 2 (color online). Number of floating point operations
required to reach convergence for CG and MG-GCR on the V ¼
323 # 96 lattice (parameters given in Fig. 1). The horizontal
line indicates the number of floating point operations of the
MG setup.
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Aniso	
  Wilson	
  

Aniso	
  Clover	
  

•  Performance	
  gain	
  depends	
  heavily	
  on	
  the	
  rela$ve	
  setup	
  cost	
  
•  Must	
  be	
  able	
  to	
  reuse	
  the	
  setup	
  



Implementa$on	
  
•  Wilson/Clover	
  MG	
  solver	
  available	
  in	
  qopqdp	
  (version	
  >=	
  0.19.1)	
  

•  Integra$on	
  to	
  HMC	
  done	
  in	
  FUEL	
  
–  Only	
  naïve	
  Wilson	
  HMC	
  is	
  available	
  
–  Clover	
  HMC	
  is	
  next	
  
–  Anisotropy	
  is	
  also	
  implemented	
  

•  Gauge	
  field	
  gets	
  updated	
  aNer	
  every	
  solve	
  in	
  HMC,	
  but	
  is	
  highly	
  
correlated	
  over	
  a	
  long	
  MD	
  $me.	
  	
  
–  Setup	
  is	
  done	
  at	
  light	
  dynamical	
  mass	
  at	
  beginning	
  of	
  trajectory.	
  	
  
–  Reused	
  in	
  subsequent	
  integra$on	
  steps	
  and/or	
  MD	
  trajectories	
  un$l	
  gain	
  

is	
  lost	
  	
  
–  Refresh	
  the	
  setup	
  when	
  (trajectory	
  $me	
  >	
  setup	
  $me	
  +	
  1st	
  trajectory	
  $me)	
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Challenges	
  for	
  MG-­‐HMC	
  
•  Need	
  to	
  compete	
  with	
  modern	
  HMC	
  algorithms	
  
•  Hasenbusch	
  mass	
  precondi$oning	
  

	
  

•  Fewer	
  light	
  quark	
  solves,	
  more	
  heavy	
  Hasenbusch-­‐mass	
  
solves.	
  MG	
  gains	
  more	
  in	
  light	
  solves.	
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where κ̃ < κ.
Note: Since the Dirac operator can be rescaled without changing the

physics, we can redefine the preconditioning operator as

W ′ = ρ(1oo + Too) − κ2Moe(1ee + Tee)
−1Meo = M̂ + (ρ − 1)(1oo + Too), (18)

where ρ = κ2/κ̃2.
Generalized to n Hasenbusch mass preconditioners, Eq.(9) becomes

SF [U, {φ†
i ,φi}] = φ†

0

(

[W−1
1 M̂ ][W−1

1 M̂ ]†
)−1

φ0 (19)

+
n−1
∑

i=1

φ†
i

(

[W−1
i+1Wi][W

−1
i+1Wi]

†
)−1

φi (20)

+φ†
n(WnW †

n)−1φn (21)

5 Matrix Inversions in the HMC Evolution

The flow of an HMC evolution goes like the following:

1. A Gaussian-distributed random vector ηi is chosen for each pseud-
ofermion field φi. One is also chosen for the conjugate momentum π,
but let’s ignore this for now.

2. Set up the pseudofermion fields. From Eqs.(19) to (21), we can deter-
mine the corresponding pseudofermion fields:

η0 = (W−1
1 M̂)−1φ0 → φ0 = W−1

1 M̂η0, (22)

ηi = (W−1
i+1)

−1Wiφi → φi = W−1
i+1Wiηi, i = 1, n − 1, (23)

ηn = W−1
n φn → φn = Wnηn. (24)

Thus for n Hasenbusch mass preconditioners, the setup will require
n matrix inversions according to Eqs.(22) and (23).

Note that without the Hasenbusch mass preconditioning, the deter-
mination of the pseudofermion field does not involve any matrix in-
version, as apparent in Eq.(9) where we can set φ = M̂η.

3. Calculate the initial Hamiltonian, which includes the contributions
from the gauge action, the conjugate momentum and the pseud-
ofermion fields. The contribution from the pseudofermion fields in-
volves the following n + 1 matrix inversions:

χ0 = M̂−1(W1φ0) (25)

χi = W−1
i (Wi+1φi) (26)

χn = W−1
n φn (27)

3



MG-­‐HMC	
  Tests	
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Meifeng Lin

October 1, 2013

1 Two-Flavor Anisotropic Wilson Lattices

1.1 Regression Tests on 243 × 64 Lattice

First, FUEL HMC code was tested against Chroma by comparing the results
of the plaquette obtained on the 243×64 anisotropic lattices with two-flavors
of unimproved Wilson fermions[1] with a Wilson mass m0 = 0.4125, or a pion
mass of about 420 MeV. In the original simulations of [1], a Hasenbusch
mass of mH = 0.374 was used, and the acceptance they found was around
60% – 70%. There was a disagreement on the critical mass on these lat-
tices: Ref.[1] found that mc ≈ −0.41473, while in Ref.[2], the authors found
that mc = −0.42116(24) using partially quenched measurements.

Lattice 15200 was used as the initial configuration in the FUEL HMC
evolution. The parameters were chosen to be the same as Ref.[1] and are
listed in Table 1. With 100 trajectories, the acceptance is about 65%,
consistent with Ref.[1].

Volume ξ0 ν ξMD τ [!] nl nH nG stop. cond.
243 × 64 2.38 1 2.4 0.707 10 40 240 1e-8

Table 1: Evolution parameters for the 243 × 64 lattices with m0 = −0.4125
and mH = −0.374. nl, nH and nG denote the numbers of integration steps
for the light mass, Hasenbusch preconditioning mass and the gauge field,
respectively. [!] Their convention of τ is

√
2 smaller than the usual conven-

tion. Thus their τ = 1 corresponds to our τ ≈ 0.707.

The plaquette values averaged over 101 trajectories (from Traj. 15200
to 15300, inclusive) with näive error analysis (i.e., no binning) are

CHROMA: 0.588047 +/- 1.52093e-05
FUEL: 0.587862 +/- 1.49858e-05

1.2 Tests on 323 × 96 Lattice

The parameters for the 323 × 96 lattices are shown in Table 2.

1
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Volume ξ0 ν ξMD τ [!] nl nH nG stop. cond.
323 × 96 2.38 1 2.4 0.707 10 60 360 1e-8

Table 2: Evolution parameters for the 323 × 96 lattices with m0 = −0.4125
and mH = −0.374. nl, nH and nG denote the numbers of integration steps
for the light mass, Hasenbusch preconditioning mass and the gauge field,
respectively. [!] Their convention of τ is

√
2 smaller than the usual conven-

tion. Thus their τ = 1 corresponds to our τ ≈ 0.707.

2 CG vs. BiCGStab

The force in the HMC evolution is defined as the change in the action with
the gauge field

Fµ(x) = −

[

δSF [U,φ,φ†]

δUµ(x)

]T

, (1)

where T denotes matrix transpose. The change in the pseudofermion ac-
tionhas the form

δSF = −φ†(M̂M̂ †)−1δ(M̂M̂ †)(M̂M̂ †)−1φ (2)

= −φ†(M̂M̂ †)−1
[

(δM̂ )M̂ † + M̂(δM̂ †)
]

(M̂M̂ †)−1φ, (3)

where
M̂ = 1oo − κ2MoeMeo (4)

is the even-odd preconditioned Wilson Dirac operator. The hermicity of
M̂M̂ † means that the above can be written as

δSF = −
(

Q−1φ
)†

[

(δM̂ )M̂ † + M̂(δM̂ †)
]

(Q−1φ), (5)

with Q = M̂M̂ †.
We can solve Q−1φ with the regular CG, or we can solve it by solving

M̂−1φ = ψ and then M̂ †−1ψ using BiCGStab. This turns out to make a
big difference. In the test cases, where the HMC evolution was done on
32 BG/Q nodes with 32 MPI processes each node, the average time per
trajectory over roughly 20 trajectories with CG and BiCGStab is 325.927
and 239.296 seconds, respectively. The solve times for the light and heavy
masses are also listed in Table 3.

Solver Light Solve [secs] Heavy Solve [secs] Trajectory Time [secs]
CG 176 121 326

BiCGStab 111 99 239
MG 61 91 187

Table 3: Light and heavy solve times and the trajectory time using CG and
BiCGStab on the 243 × 64 lattices, averaged over roughly 20 trajectories.

On the 323 × 96 lattices, similar speedup is seen, as shown in Table 4.

2

•  Star$ng	
  from	
  exis$ng	
  thermalized	
  anisotropic	
  2-­‐flavor	
  Wilson	
  
laices.	
  (Bulava	
  et	
  al.	
  2009)	
  

•  Apples-­‐to-­‐apples	
  comparison:	
  use	
  the	
  same	
  HMC	
  setup.	
  Simply	
  
replace	
  the	
  original	
  solver	
  with	
  MG	
  solver	
  

•  Pion	
  mass	
  ~	
  420	
  MeV.	
  Tested	
  on	
  two	
  laice	
  volumes.	
  	
  

•  Run	
  on	
  32	
  BG/Q	
  nodes	
  with	
  32	
  MPI	
  processes/node	
  at	
  ALCF.	
  	
  



MG	
  Parameter	
  Tuning	
  

Solver Light Solve [secs] Heavy Solve [secs] Trajectory Time [secs]
CG 830 628 1596

BiCGStab 445 502 1086
MG 209 451 822

Table 4: Light and heavy solve time and the trajectory time averaged over
from 3 to 8 trajectories using CG, BiCGStab and MG on the 323×96 lattices,
started from Traj.2300. The MG run used the same setup as Run 5 in
Table 5 except for nvecs which was 20 in this case.

3 Multigrid HMC

3.1 Multigrid Parameter Tuning

Current implementation of the MG-HMC is simply replacing the solver with
the Multigrid solver. The effectiveness of MG-HMC depends highly on the
parameters chosen for the Multigrid setup. Table 5 shows a sample set of
test runs.

MG parameters Run 1 Run 2 Run 3 Run 4 Run 5 [nvecs=16]
setup res. 0.4 0.1 0.4 0.1 0.5

cres 0.3 0.3 0.5 0.3 0.3
setup change fac 0.4 0.1 0.2 0.4 0.4

npre 5 5 4 0 5
npost 9 9 9 5 9
scale 1 0 0.2 1 1

Setup Time [secs] 49 61 43 65 29
Traj. 1 Time [secs] 160 575 308 152 162
Traj. 2 Time [secs] 182 672 376 214 176
Traj. 3 Time [secs] 201 686 409 282 192
Traj. 4 Time [secs] 222 681 427 344 208

Table 5: One MG level. 33 × 4 coarsening. nvecs = 24 except for Run 5.
ngcr = 8.

Note that while Run 5 offers the best overall performance, Run 4
actually outperforms Run 5 in the first trajectory, but it deteriorates
more quickly than Run 5. The main difference between the two setups is
the setup residual.

3.2 MG Performance

With the setup in Run 4, the single light solve takes about 3 seconds,
compared to 10 seconds with BiCGStab or 16 seconds with CG. So the
wall clock speedup is about a factor of 3 w.r.t BiCGStab, or a factor of 5
w.r.t to CG. This performance is not as good as what was stated in Ref.[3],

3
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•  Many	
  parameters	
  to	
  tune.	
  	
  
•  Fixed	
  nvecs	
  =	
  24	
  in	
  Run	
  1-­‐4,	
  and	
  16	
  in	
  Run	
  5.	
  	
  
•  Scanned	
  other	
  parameters	
  to	
  find	
  the	
  best	
  set.	
  	
  
•  Manual	
  and	
  painful.	
  Needs	
  a	
  bener	
  (preferably	
  automa$c)	
  tuning	
  

strategy.	
  	
  



Tuning	
  for	
  MG-­‐HMC	
  

Solver Light Solve [secs] Heavy Solve [secs] Trajectory Time [secs]
CG 830 628 1596

BiCGStab 445 502 1086
MG 209 451 822

Table 4: Light and heavy solve time and the trajectory time averaged over
from 3 to 8 trajectories using CG, BiCGStab and MG on the 323×96 lattices,
started from Traj.2300. The MG run used the same setup as Run 5 in
Table 5 except for nvecs which was 20 in this case.

3 Multigrid HMC

3.1 Multigrid Parameter Tuning

Current implementation of the MG-HMC is simply replacing the solver with
the Multigrid solver. The effectiveness of MG-HMC depends highly on the
parameters chosen for the Multigrid setup. Table 5 shows a sample set of
test runs.

MG parameters Run 1 Run 2 Run 3 Run 4 Run 5 [nvecs=16]
setup res. 0.4 0.1 0.4 0.1 0.5

cres 0.3 0.3 0.5 0.3 0.3
setup change fac 0.4 0.1 0.2 0.4 0.4

npre 5 5 4 0 5
npost 9 9 9 5 9
scale 1 0 0.2 1 1

Setup Time [secs] 49 61 43 65 29
Traj. 1 Time [secs] 160 575 308 152 162
Traj. 2 Time [secs] 182 672 376 214 176
Traj. 3 Time [secs] 201 686 409 282 192
Traj. 4 Time [secs] 222 681 427 344 208

Table 5: One MG level. 33 × 4 coarsening. nvecs = 24 except for Run 5.
ngcr = 8.

Note that while Run 5 offers the best overall performance, Run 4
actually outperforms Run 5 in the first trajectory, but it deteriorates
more quickly than Run 5. The main difference between the two setups is
the setup residual.

3.2 MG Performance

With the setup in Run 4, the single light solve takes about 3 seconds,
compared to 10 seconds with BiCGStab or 16 seconds with CG. So the
wall clock speedup is about a factor of 3 w.r.t BiCGStab, or a factor of 5
w.r.t to CG. This performance is not as good as what was stated in Ref.[3],

3
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•  Run	
  4	
  	
  has	
  the	
  best	
  $me	
  for	
  first	
  trajectory,	
  but	
  deteriorates	
  quickly	
  
•  Run	
  5	
  has	
  the	
  best	
  overall	
  performance.	
  
•  Same	
  setup	
  can	
  be	
  used	
  for	
  3	
  trajectories.	
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Figure 1: Single solve time with Multigrid setup in Run 4 (red) and Run
5 (green). The curves from bottom to top correspond to heavy M−1 solve,
heavy M †−1 solve, light M−1 solve, light M †−1 solve.

where a factor of 8 speedup was achieved comparing MG to CG in terms of
floating point operation counts (c.f. Figure 2 in Ref.[3]).

With the setup in Run 5, it is clear that the same setup can be used for
3 trajectories before a refresh is needed. The timing breakdown is shown in
Table 3, which already has the MG setup time included. Note that the wall
clock time speedup for the light solve is on average a factor of 2. However,
there is virtually no speedup for the heavy solves.

3.3 Effects of Source Vectors

Tests were carried out to see how much effect different source vectors
have on the solver. This directly impacts the efficiency of the Multigrid
solver. The tests were done on the anisotropic 32×96 lattices described
earlier. Three types of source vectors were used: a point source vector
δ(x−x0), a random source vector η(x), and a pseudofermion field-like vector
D(x, y)η(y). mg-test was run on cfg. 2300 of the JLab lattices, the timing
is recorded in Table 6 comparing time-to-solution with CG, BiCGStab, and
MG.

4
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•  If	
  the	
  setup	
  is	
  tuned	
  too	
  well	
  for	
  the	
  first	
  solve,	
  subsequent	
  solves	
  get	
  worse	
  
quickly.	
  è	
  physical	
  reasons?	
  	
  

•  If	
  it	
  is	
  not	
  tuned	
  well,	
  overall	
  gain	
  is	
  small.	
  	
  
•  It	
  is	
  tricky	
  to	
  find	
  the	
  sweet	
  spot.	
  	
  



MG-­‐HMC	
  Performance	
  

Volume ξ0 ν ξMD τ [!] nl nH nG stop. cond.
323 × 96 2.38 1 2.4 0.707 10 60 360 1e-8

Table 2: Evolution parameters for the 323 × 96 lattices with m0 = −0.4125
and mH = −0.374. nl, nH and nG denote the numbers of integration steps
for the light mass, Hasenbusch preconditioning mass and the gauge field,
respectively. [!] Their convention of τ is

√
2 smaller than the usual conven-

tion. Thus their τ = 1 corresponds to our τ ≈ 0.707.

2 CG vs. BiCGStab

The force in the HMC evolution is defined as the change in the action with
the gauge field

Fµ(x) = −

[

δSF [U,φ,φ†]

δUµ(x)

]T

, (1)

where T denotes matrix transpose. The change in the pseudofermion ac-
tionhas the form

δSF = −φ†(M̂M̂ †)−1δ(M̂M̂ †)(M̂M̂ †)−1φ (2)

= −φ†(M̂M̂ †)−1
[

(δM̂ )M̂ † + M̂(δM̂ †)
]

(M̂M̂ †)−1φ, (3)

where
M̂ = 1oo − κ2MoeMeo (4)

is the even-odd preconditioned Wilson Dirac operator. The hermicity of
M̂M̂ † means that the above can be written as

δSF = −
(

Q−1φ
)†

[

(δM̂ )M̂ † + M̂(δM̂ †)
]

(Q−1φ), (5)

with Q = M̂M̂ †.
We can solve Q−1φ with the regular CG, or we can solve it by solving

M̂−1φ = ψ and then M̂ †−1ψ using BiCGStab. This turns out to make a
big difference. In the test cases, where the HMC evolution was done on
32 BG/Q nodes with 32 MPI processes each node, the average time per
trajectory over roughly 20 trajectories with CG and BiCGStab is 325.927
and 239.296 seconds, respectively. The solve times for the light and heavy
masses are also listed in Table 3.

Solver Light Solve [secs] Heavy Solve [secs] Trajectory Time [secs]
CG 176 121 326

BiCGStab 111 99 239
MG 61 91 187

Table 3: Light and heavy solve times and the trajectory time using CG and
BiCGStab on the 243 × 64 lattices, averaged over roughly 20 trajectories.

On the 323 × 96 lattices, similar speedup is seen, as shown in Table 4.

2
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Solver Light Solve [secs] Heavy Solve [secs] Trajectory Time [secs]
CG 830 628 1596

BiCGStab 445 502 1086
MG 209 451 822

Table 4: Light and heavy solve time and the trajectory time averaged over
from 3 to 8 trajectories using CG, BiCGStab and MG on the 323×96 lattices,
started from Traj.2300. The MG run used the same setup as Run 5 in
Table 5 except for nvecs which was 20 in this case.

3 Multigrid HMC

3.1 Multigrid Parameter Tuning

Current implementation of the MG-HMC is simply replacing the solver with
the Multigrid solver. The effectiveness of MG-HMC depends highly on the
parameters chosen for the Multigrid setup. Table 5 shows a sample set of
test runs.

MG parameters Run 1 Run 2 Run 3 Run 4 Run 5 [nvecs=16]
setup res. 0.4 0.1 0.4 0.1 0.5

cres 0.3 0.3 0.5 0.3 0.3
setup change fac 0.4 0.1 0.2 0.4 0.4

npre 5 5 4 0 5
npost 9 9 9 5 9
scale 1 0 0.2 1 1

Setup Time [secs] 49 61 43 65 29
Traj. 1 Time [secs] 160 575 308 152 162
Traj. 2 Time [secs] 182 672 376 214 176
Traj. 3 Time [secs] 201 686 409 282 192
Traj. 4 Time [secs] 222 681 427 344 208

Table 5: One MG level. 33 × 4 coarsening. nvecs = 24 except for Run 5.
ngcr = 8.

Note that while Run 5 offers the best overall performance, Run 4
actually outperforms Run 5 in the first trajectory, but it deteriorates
more quickly than Run 5. The main difference between the two setups is
the setup residual.

3.2 MG Performance

With the setup in Run 4, the single light solve takes about 3 seconds,
compared to 10 seconds with BiCGStab or 16 seconds with CG. So the
wall clock speedup is about a factor of 3 w.r.t BiCGStab, or a factor of 5
w.r.t to CG. This performance is not as good as what was stated in Ref.[3],

3

•  Light	
  solve:	
  MG	
  is	
  2x	
  faster	
  than	
  BiCGStab,	
  3-­‐4x	
  faster	
  than	
  CG	
  

•  Speedup	
  per	
  trajectory	
  not	
  as	
  big	
  	
  
•  Bonleneck	
  is	
  heavy	
  solves	
  è Can	
  rebalance	
  HMC	
  

24^3x64,	
  $me	
  averaged	
  over	
  20	
  trajectories	
  

32^3x96,	
  $me	
  averaged	
  over	
  3-­‐8	
  trajectories	
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•  Source	
  vectors	
  have	
  linle	
  effect	
  on	
  CG	
  or	
  MG.	
  	
  
•  BiCGStab	
  converges	
  much	
  faster	
  for	
  a	
  random	
  source	
  vector.	
  	
  



Reversibility	
  

Source Vector mass CG [secs] BiCGStab [secs] MG [secs]
δ -0.4125 52.3 52.8 5.4

-0.4135 57.9 59.3 5.5
-0.4145 73.5 62.2 5.7

(physical) -0.4155 87.3 71.4 6.3
-0.4165 112.0 85.2 6.6

(critical) -0.4175 142.2 106.1 7.1
η -0.4125 54.9 15.6 5.5

-0.4135 62.6 17.9 5.7
-0.4145 76.7 21.0 5.9

(physical) -0.4155 94.0 22.0 6.4
-0.4165 117.3 26.0 6.7

(critical) -0.4175 172.6 35.8 7.5
Dη -0.4125 30.8 10.4 4.7

-0.4135 34.3 11.2 4.8
-0.4145 38.2 13.5 4.9

(physical) -0.4155 43.4 16.9 5.3
-0.4165 57.3 17.8 5.5

(critical) -0.4175 68.4 20.2 5.9

Table 6: Time-to-solution for different solvers with different source vectors.

3.4 Reversibility Test

==With MG==
Sold: 22721701.88 Srev: 22721701.88 dS: 1.329928637e-06
Sold: 22725067.11 Srev: 22725067.11 dS: -0.001061491668
Sold: 22713290.68 Srev: 22713290.68 dS: 0.0005583688617
Sold: 22721697.35 Srev: 22721697.35 dS: -0.0001310259104
Sold: 22724432.14 Srev: 22724432.14 dS: -0.0001665465534

==Without MG (BiCGStab)==
Sold: 22721701.88 Srev: 22721701.88 dS: 0.0003642588854
Sold: 22725067.1 Srev: 22725067.1 dS: -0.0002857670188
Sold: 22713290.69 Srev: 22713290.69 dS: -0.0004257671535
Sold: 22721697.35 Srev: 22721697.35 dS: -0.0006039328873
Sold: 22724432.15 Srev: 22724432.15 dS: -0.0003919377923
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•  Will	
  reusing	
  the	
  setup	
  affect	
  reversibility?	
  
•  No	
  sign	
  so	
  far,	
  but	
  more	
  tests	
  are	
  needed.	
  	
  



TODO	
  

•  Clover	
  MG-­‐HMC	
  
•  Tests	
  on	
  lighter	
  masses	
  and	
  larger	
  volumes.	
  	
  
•  Retuning	
  of	
  HMC	
  to	
  see	
  if	
  further	
  speedup	
  is	
  possible.	
  	
  
•  Reuse	
  previous	
  near-­‐null	
  vectors	
  to	
  reduce	
  subsequent	
  setup	
  cost.	
  
•  Automa$c	
  tuning	
  of	
  MG	
  parameters?	
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Conclusions	
  	
  

•  MG-­‐HMC	
  for	
  Wilson	
  has	
  been	
  implemented	
  in	
  FUEL.	
  	
  

•  Performance	
  at	
  a	
  pion	
  mass	
  of	
  420	
  MeV	
  is	
  already	
  promising.	
  

•  Gain	
  should	
  be	
  bener	
  with	
  lighter	
  masses	
  and	
  larger	
  volumes.	
  

•  More	
  work	
  needs	
  to	
  be	
  done	
  on	
  op$miza$on	
  strategies.	
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